

LA-UR-19-29486

Approved for public release; distribution is unlimited.

Title: Natural Convection in a Storage Container: Coupling Abaqus to a

Surrogate Model

Author(s): Fister, Matthew Wood

Intended for: inter-group communication

Issued: 2019-09-20

Natural Convection in a Storage Container

Coupling Abaqus to a Surrogate Model

Matt Fister

September 4, 2019

Internal heat source causes natural convection in storage containers.

SANDIA REPORT

SAND97-8017 • UC-700 Unlimited Release Printed February 1998

Weapon Container Catalog Volumes 1 & 2

Los Alamos National Laboratory

How can we add convection to existing FE model?

- 3DExperience
 - no licenses; E-13 said no
- Couple Abaqus with CFD code
 - communication at each increment
 - Abaqus supports file I/O for this purpose; does CFD code?
 - some assembly required (file formatting, timing, etc.)
 - requires concurrent installations and licensing for both codes
 - for reference, I'm running Fuego out of Temo's /scratch on Hamming!
 - communication at each job
 - requires multiple Abaqus runs
 - only works well if few iterations are required (i.e. not strongly coupled physics)
 - some assembly required
- Or...

We could couple Abaqus to a surrogate model.

How do we build the surrogate model?

We need scalar inputs and outputs!*

How do we build the surrogate model?

How do we build the surrogate model?

Surrogate modeling has its limitations.

Does our input space encompass the T distributions Abaqus will give us?

How well does PCE match the T distribution from Abaqus?

How well does the surrogate model match the CFD calculations?

Surrogate model

How well does PCE match the HTC distribution from CFD?

How do we choose the surrogate's input parameter space?

 # of dimensions in input domain determines what shape T distribution we can handle

How do we choose the surrogate model form?

Would the relationship be simpler if we used different decompositions?

Surrogate model form depends on the CFD model.

What CFD software is available to E-13?

- Ansys Fluent
 - widely used, commercial software
 - detailed documentation, lots of examples, large community
 - not E-13 software
 - previously ran on E-1's 20-core computer via RDP
- Sierra Fuego
 - not widely used (here)
 - "documentation" is a half-complete, auto-generated API
 - also not E-13 software
 - currently running from Temo's /scratch on yellow Hamming
 - requires no licenses, can run on Hamming via SSH

Will Fuego work for low ΔT problems?

- Fuego was created for modeling fires
 - natural convection, but much higher thermal gradients
- Our application has temperature differences < 10 K
- Abundant literature on natural convection provides ways of "verifying" Fuego for our problem
 - experimental data and numerical solutions

Verification Problem #1

$$Nu = 0.18 \left(\frac{Pr}{0.2 + Pr} Ra_H \right)^{0.29} \left(\frac{L}{H} \right)^{-0.13}$$

Non-dimensional numbers in natural convection.

- Ra Rayleigh number
 - characterizes flow regime (laminar vs turbulent)
 - -Gr*Pr
 - x-axis for lots of empirical natural convection relationships
- Gr Grashof number
 - ratio of buoyancy forces to viscous forces
 - Reynolds number for natural convection
- Pr Prandtl number
 - ratio of thermal to velocity boundary layer thicknesses
 - material property (~0.7 for air)
- Nu Nusselt number
 - ratio of convective to conductive heat transfer

Good mesh convergence for Verification Problem #1.

Verification Problem #1 solution agrees well with published results.

Verification Problem #1

Streamlines and isothermal contours qualitatively match published results as well.

Fuego matches published results for Verification Problem #2.

Temperature-dependent air properties don't matter for our problem.

Fuego model scales efficiently to at least 4 cores.

It's easy to apply PCE temperature distribution in Fuego.

There are 2 main questions regarding the surrogate model.

- 1. How big should the input space be?
 - −i.e. how accurately do we need to model the temperature distribution?
- 2. Can a surrogate model accurately relate our inputs to our outputs?
 - inputs: PCE coefficients for temperature
 - outputs: PCE coefficients for HTC

"Good enough" depends on the FE model's sensitivity to the PCE.

CFD results using example temperature distribution.

HTC is sensitive to the temperature PCE accuracy.

Is there a better way?

- It seems like I'm shoehorning in additional physics via surrogate models when we should be using a multi-physics package.
- Is there a use-case for using surrogate models in this way?
- Should the temperature and HTC distributions be decomposed differently?
 - Radial basis functions?
- What form should the surrogate model take?
 - PCE? Gaussian process?
- How big should the input space be?
 - Sensitivity study with FE model should answer this

Appendix

5th order PCE

4th order PCE

3rd order PCE

2nd order PCE

1st order PCE

0th order PCE

